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Abstract. Thispaperreviewsthe developmentof parastatisticsandinterprets the
para-Fockspacesashighestweightmodulesof infinite dimensionalsuperLie alge-
bras, Severalgeneralizationsareproposedandtherelation to compositemodelsand
confinementis pointed Out. A conceptof dcinematicalconfinement,> is suggested,
withpossibleapplication to thestronginteractions.

1. INTRODUCTION

The possibilityof <<abnormal>>quantumstatisticswas raisedlongago and occasion-
ally becomea hotsubject.Theideaof a quantumfield theorybasedon somethingother

thanBose-EinsteinorFermi-Diracquantizationbecameespeciallyinterestingatthe time
whenphysicistswere debatingtheobservabilityof quarks.Sincethattime, for whatwe

thjn]( areexcellentreasons,theideaof abnormalstatistics(laterreplacedby <<color>>)has
beenclosely associatedwith confinement.

Thebasisof quantumstatisticsis thetheoryof canonicalcommutationrelations.(In
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thispaper,for reasonsof economy,welimit ourselvesentirelyto generalizationsof Bose-

Einsteinstatistics;aparalleldiscussionof theFermi-Diraccasewould berepetitive).The
ideaof generalizationsarisesfrom theobservationthatthemostimportantobservables

(free Hamiltonians,symmetrygenerators,,...)arebilinearsin the fields (phasespace

variables).Seenin this(grouptheoretical)setting,it is immediatelyevidentthat<<paras-

tatistics>’, as introducedby Greenandothers,is susceptibileto immediate,naturaland

interestinggeneralizations.Seeespeciallywhat canbe donewith amulti-dimensional

<<vacuum>>sector,below and in Section4.

The currentinterestof the authorsin reviewingtheseideassternsfrom theirwork on

singletons.The kinematicsof singletonstates,andmoreespeciallythe structureof sin-

gletongaugetheory, showsthat thesingletonfield is not locally observable,a property

that is verysimilar to confinement.For singletonfield theoryto becomephysicallyrele-

vant it is necessaryto introduceanonlocal elementinto thetheory;this canbedonevia

thechoiceof statistics.In fact, non-obscrvabilityof thebasicfield variablesmaybeseen

asanopportunityfor theexploitationof generalizedstatistics.If microcausalityis to be

preserved,thenquarksandgluons(dynamicallyconfined)andsingletons(kinematically

confined)arethe only particlesfor which non standardquantizationrulesmay be con-

templated.Thequantizationschemethathasbeensuggestedfor singletonfield theory,

to bedescribedonly briefly at theendof this review,differs from parastatisticsin oneim-

portantrespect.Thekinematicalpropertiesof two-singletonstatesarethoseof massless

particlescomposedof singletons.The new quantizationrulesgive rise to an enlarged

Fock space(asin thecaseof parastatistics).Theadditionalstates,not theusualsymmet-

rical two-singletonstates,areidentifiedasmasslessparticles(aphotoncannotdecayinto

two singletons!).Ournewquantizationscheme(adeformationof Bose-Einsteinquan-

tization) insuresthat thesemasslessparticlesobeystandardstatistics,somethingthat is

not guaranteedby parastatistics.

Thereis anobviousrelationshipbetweenthefundamentalspace-timegroup(Poinea-

r~,Dc Sitter,. . .) andthe algebraof observablesof thetheory (sp,osp,...) : theformer

mustactby automorphismson thelatter. Someof the implicationsof this aretakenup

in Section6. Oneof the generalizationsdiscussedin this paperdealswith an infinite

dimensionalvacuumsectorthat is a carrier spacefor a U.I.R. of theDe Sitter group.

The <<charge>>that distinguishesbetweendifferent vacuais in this casethe Dc Sitter

minimal energy E0 . Suchquantizationschemesmay be relevantto massgenerationof

theHiggs-Kibbletype. Non-standardvacuaof this kind may alsofind applicationto the

cosmicresidualbackgroundradiation.

As we havesaid already,abnormalstatisticsis accompaniedby aviolation of micro

causality. This can be acceptedin aphysical theoryonly on the condition thatthe as-

sociatedparticles(quarksor singletons)be confined. This amountsto alimitation on

thealgebraof truephysicalobservables,which shouldcontainonly micro-causalfields.

Only particlesconnectedto true observablescan be directJy observed. To emphasize
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thispoint, recall thatthe typeof abnormalstatistics(anticommutativityof differentBose
fields)thatis sometimesdiscussedwithin thecontextof Wightrpanaxiomaticfield theory
canberemovedby anon-localAraki-Klein transformation.Evensucha mild deviation
from standardstatisticsas this hasprofoundconsequencesfor the local (pointlike) be-

haviourof the fields.
Throughstringtheoriestheconceptofhighestweightmodulesof infinite dimensional

(super)Lie algebrashasbecomeof interestto physicists.The infinite dimensionalor-

thosymplecticalgebraosp( 1,cxa) is one of the simplestones,andit is of directinterest
in ordinaryfield theory. The unitarizablehighestweightmoduleswith a nondegener-
atehighestweight space(vacuum)are preciselytheFock spacesof parastatistics,and
thusconnectedto QCD.Theotherunitarizablehighestweightmoduleshavedegenerate

vacua,but for all that theymay well havephysicalapplications,perhapsto symmetry
breakdown.

Parastisticsisby no meanstheonlyalternativetoBose-EinsteinorFermi-Diracstatis-
tics.We reviewthesubjectin Sections2-4 and proposesomeotherpossibilitiesin Sec-

tion 5. Thenweturn to a considerationof parastatisticsin theframeworkof gaugetheo-
ries.In Sections7 arid 8 wediscusscompositenessandconfinement,withan application
to compositeelectrodynamicsanda suggestionfor the stronginteractions.

2. STRUCTURE

Oneconsidersa field ~ on space-time,with a discreteFourierexpansion

(2.1)

Thefunctions /-‘ aresolutionsof somewaveequation,takingtheir valuesin a finite
dimensionalvectorspace.In a quantum field theory a5 and ax) are operatorsacting

in a Hilbcrt space.It is sometimessaidthat ~, and thereforealso a5 and ax) , arenot
directly observable.The most importantobservables,including the Hamiltonian, are

bilinears(currents)

(2.2) Q~= ~-[a~,a~]÷

and perhapsalso

~23~ — ~ 1 — *5/ 5k 2ta5,akl+, ~ — 2~a ,a ~

Bose-Einsteinquantizationis basedon thepostulateof canonicalcommutationsre-

lations
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~ ~k
1 5k

(2.4) [:j,akL=[a*3,a*k = 0.

Fromthis it follows that, for example,

(2.5) [Q~,a*l]_ =

(2.6) [P).k,a*h]_ = i
5ia~+

(2.7) [~,t,at]_O.

Nowit canbearguedthat theserelationsare all that matterandthatEqs. (2.4) have

alowerstanding.
Eqs. (2.4) leadtoaquantumfield theoryof particlesobeyingBose-Einsteinstatistics.

It wasproposedby Gentile,[1] in 1940, that alternativeformsof statistics,intermediate

betweenFermi-Dirac and Bose-Einstein,could be envisaged. He showedthat a gas
obeyingintermediarystatisticswould show a characteristicthermodynamicbehavior.
Thisproposalwasstronglycriticizedby Sommerfeld[2] andothers[3] who arguedthat
it wasinconsistentwith thebasicstructureof quantummechanics.This isless surprising

than the factthat the quantummechanicsof para-bosonsremainspoorly understoodto
this day.

In 1950, Wigner remarked[4] that, in the caseof a systemof onedegreeof free-

dom, specifically the harmonicoscillator,onlyEq. (2.5) is neededto derivethe correct
equationsof motion,and(2.4) canin factbemodified inanessentialway. The structure
investigatedby Wigner is definedby

[Q,a]_—a, [Q,a*]=a*, [a,a*]+2Q.

The superLie algebrageneratedby a,a*, Q and a2,a2 , with commutationre-
lationsfor the last two dictatedby the Jacobi identity, is osp(1,2) , andWignerwas

perhapsthe first to studyits representations.
Theseideas— Gentile’sstatisticsandWigner’squantizationpostulate— cametogether

for the first timein 1953, in the work of H.S. Green [5]. HetookEq. (2.5) asthebasic
postulate— necessaryto derivetheequationsof motion—but addedEqs. (2.6) and (2.7)
as well, perhapsbecausethe operators ~ would seemto be qualified observables.

Anyway, the structure(2.5)-(2.7)hasbecomethedefinitionof parabosequantization.
It should be stressedthat Eqs. (2.2) and (2.3) are interpretedas definitionsof the

P’s and Q’.s. It then follows from Eqs. (2.5)-(2.7) that the commutatoralgebraof

theseoperatorshastheLie algebrastructureof theinfinite sympleticLie algebradenoted
sp(oo) . This wasfirst pointedoutby KamefuchiandTakahashi[6].
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WhenthisLie algebraisextendedby inclusionof theoperatorsa1,a*J ,with commu-
tationrelations (2.5)-(2.7) and theanti-commutationrelations(2.2) and(2.3), thenone

recognizesthestructureof the infinite orthosymplecticsuperLie algebraosp(1,~)
This was first pointedoutby Omoteet al. [7] in 1976. It shouldbenoted that neitherof

thesestructures,sp( oo) or osp(1,oo) ,includesthecanonicalcommutationrelations
(2.4).

Thestructureof parabosestatisticsisthustheLie superalgebraosp(1,oo) . Thespe-
cial relations(2.4) are outsidethe structureandare definedin the envelopingalgebra;
they characterizea very specialclassof representationsof osp(I , oc) and this class
includesthe usual Fock spaceconstructionof Bose-Einsteinfield theory. Among the

otherhermitianrepresentationsof osp(1, cxa) the simplestones areintimately related
to parabosestatistics,as will be seennext in Section3. The remaininghennitianrepre-

sentationsareconstructedondegeneratevacua,in Section4. After that weshallconsider
interestingalternativesto osp(1, oo) , for this algebrais nottheonly oneon which one

canbasefield quantization.

3. REPRESENTATIONS

A completeaccountingof the linear representationsof osp( 1,oo) is both difficult

andunnecessary.Physicsis oftensaidto beinterestedexclusivelyinhermitianrepresen-
tations,but this is not true unlessonewould excludegaugetheories(including strings)
from physics. Whatis trueis that hermitianrepresentationsappearas subquotientsof

the representationsthat are realizedon the field modes. The latter cansometimesbe

constructedfrom theformer,but additionalinput is required,usuallylocality.
Fortunately,thereisanotherimportantphysicalrequirementthatholdseveningauge

theories. The energyshouldbepositiveor,moreprecisely,boundedbelow. Thus,we

makethe

POSITIVEENERGYHYPOTHESIS.Thespectrumof theenergyoperatorH is bounded

below.

If the spectrumof H is discrete,then therewill be a subspaceof Hilbert spaceon
which H takesits lowest value; this subspaceis usuallytakento be one-dimensional,

in whichcaseoneisled to the:

STRONG VACUUM HYPOTHESIS.Thereis a unique,one-dimensionalsubspace(with
basis 0) ) on whichtheenergyoperatorH reachesits lowestbound.

In the caseof a relativistic field theory in Minkowski spacethe spectrumof H is

neverdiscrete. In this respectthe situationis muchmorefavorablein De Sitterspace,
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wherethe energy spectrumof positive energy representationsis alwaysdiscrete. In

Minkowski field theorieswithout masslessparticlesthe lowerboundof the spectrum
is isolated. But if masslessparticlesare present,as it is in all gaugetheories,then the
lowerbound is atthe endof a continuum(the soft photonspectrum),and in this case

it is not at all obviousthat thevacuumsectorexistsat all. Forthis reasonwepreferto
continuethe discussionin the contextof field theory on Dc Sitter space.It shouldbe
notedthatmostofthecitedpapersdealwith a discretebasisin thespaceofoneparticle

states,somethingthat ismore thana little akwardtojustifyin a Minkowskispacefield

theory.
A standardprocedureallows us to constructall the irreduciblerepresentationsof

osp(1, n) with positiveenergy;this includesall thehermitian representations[8]. The
methodis well knownasholomorphicinductionandrelieson the identificationof a solv-

ablesubalgebraof osp( I , n) . In thecaseof osp( 1, nc) thesameconstructioncanbe
carriedout, butexhaustivityis notassured.

We supposethat thereis an actionof the space-timegroup so(3,2) on the linear

spacespannedby (a*)) , j I , 2 and that this action is a positive energyrep-
resentation.This justifies our referringto the a~’sas positiveenergyoperators. The

P’s( ~*!~) are negative(positive)energyoperators,while the Q’s arcof bothkinds.

Theinducing subalgebrais

(3.1) B = span(aJ,P,.~,Q~).

Wechoosean irreduciblerepresentation~r0 of B , on a space V0 , suchthat

7r0(a,) = 0, ~ = 0.

Therestrictionof it3 to thesubalgcbraspannedby the is irreduciblebutother-

wisearbitrary for themoment.

Let it be the representationof osp( I , ~) that is inducedfrom the representation

it0 of B;

osp(~)

ir=IND I ~r0.
B

It is given by the naturalactionof osp(1,~) on the space

(3.2) V=U®V0,
B

where U is the universalenvelopingalgebraof osp(I, oc)
The space V0 is the <<vacuum>>sector. At first we limit ourselvesto the casewhen

V0 isone-dimensional(caseof nondegeneratevacuum)andchooseabasis 0) for V0
thevacuumstate.Writing e.g., a~for ir(a,) , we then have
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a,jO)O, 1~Jkl0)”0’

(3.3) Q~lo)=~-6~l0),)
5real.

Thelast equation(with )~integer)is thebasicassumption,alongwithGreen’scom-
mutationrelations,for parabosestatistics.Thiswasfirst madeexplicit by McCarthy[9].

Thevectors

0), a*hlo), a*ja*kIO),

spanV. We next introduce,in standardfashion,aninvariantnorm on V. Ignoring
zero norm statesweshallthenrecoverordinaryFock spacewhen)~= 1 andpara-Fock

spacewhen )~= 2 , 3
Let a beahomogeneouspolynomialin the a*/s ; thenoneeasilyshows(since 0) is

ahighestweightvector)that z*xl0) isarealmultiple N(z) of 10). Thisgivesanorm

N( a) = I Ia 112 on V , and an innerproductwith respectto which the restrictionof it to
thereal subsuperalgebrais hermitian.Butthisnorm isnotpositiveingeneral.Werecall
the analogusconstructionfor osp(l , 2n) [10]. For )~> n— 1 the representationit
is irreducible,and therestrictionto osp(1,2n, R) is unitarizable.For )~< it — 1 the
representationisirreducibleandnotunitarizable,exceptfor thevalues)~= 0, 1, ... , n—
I . Thus,for infinite it only thenon-negative,integralvaluesof )~are of interest.

When )~belongsto this exceptionalset, )~= 0,l,...,n— I for osp(l,2n) and
= 0, 1,2,... for osp(1, oo) , then the invariant norm is degenerate;V contains

an invariantsubspaceV~,the radical of the innerproduct. An irreducible,hermitian
representationof the realsubalgebraisinducedonthequotientV/Vg. Weshalldemon-

stratethis for thelowestvaluesof )~. The factthat parabosestatisticsrequires)~to be

a positive integerwas postulatedbutnot provedalreadyby Green[5]. Greenbergand
Messiah[11] seemto havebeenthefirst to connectintegralityof )~to positivity of the
norm.

Settingthe norm (0 0) to 1 wehave

(OIa.a*kIO) = (012Qk1Q) =
(3.4)

(OIa,.ata*la*mIO)= )~{(2— )~)8~6~’+)~67~6.~},

which showsthat:

a) When )~= 0 , a*j 10) andall otherbasisvectorsexcept 10) havezeronorm. The

quotient V/Vs, is one-dimensionalandcarriesthe trivial representation.
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b) When )~ = 1 ,the antisymmetricstates(a*ta*m — a*ma*t)l0) havezeronorm.
Lessobviousatfirst sight is thefactthat

(3.5) [a*l,a*m]_ = 0

Ofl V/V9 ; this is provedby induction. If

,j~] a~~’.a*)plo)

is equal Mod V9 to its symmetricpart(which, aswehavejust seen,is truefor p = 2 ),
then

a3P[j1,... ,j~.1]

is equal Mod V9 to

~uj ~)1,’’,)k,’’’,)~IJ,

k=I

which showsthat t{J [j~ ,,~ I~+1] is equal Mod to its symmetricpart.
It isnow easyto seethat thefirst ofEqs. (2.4) alsoholdsin V/V9 , when)~= 1 . The

spaceis thusordinaryBose-EinsteinFock space.This representationof osp(1,2 n)
with it finite or not, is calledthe oscillator representation;it is the mostdegenerate
representationand,for finite n, theonly one in which (2.4) holds.

For )~= 2 , thevectors(3.4) havepositivenorm. On the otherhand

aia*ka*ta*ml0) = (~a~la*m+~7~a
4a’~)l0 >

is thesymmetricin k,m, from which it may easilybe deducedthat thevectors

[a*ka*ta*m— (k,m)]l0)

havezero norm. Furthercalculationsshow that the quotient V/Va is in this casethe
Fockspaceof the simplestform of para-Bosestatistics.Thefollowingfactssummarize,

in the presentidiom, theresultof manypeople;the most completestatementsare to be
foundin thebook of Ohnuki and Kamefuchi,Ref. II.

1) For any positive integer m, the action of the symmetricgroup S(m) on the
space Vm spannedby

a*)1 . . . a*)mlo)
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reduces to a direct sum of irreducible representations, identified with their Young ta-

bleaux. All tableauxwith m boxesappeareachonewith multiplicity 1 [12].
2) When A is a positiveinteger,then V/V9 coincideswith theFock spaceof para-

Bose quantizationof order A [11].
3) When A isapositiveinteger, thenthe intersectionof Vm with the subspace V/~of

zero norm contains precisely those Young tableaux that have more than A rows. That

is, the quotient Vm/(Vm fl k;) of physical statescontainsevery Young tableauwith

m boxes and no more than A rows precisely once. See Ohnuki and Kamefuchi,[11]
Bracken andGreen[13].

The representations of the real subalgebra of osp( 1, oc) induced on V/k;, in all

caseswith anondegeneratevacuumand A integer,arehermitian.A simpleproofrelated
to Green’s ansatzis givenin theAppendix.

Thegeneralizationof Bose-Einsteinquantizationproposedby Green[5] andsubse-
quently known as parastatistics,is timid. Thepresentview of it, in termsof highest
weight osp(I, oc) modules,carriesusmuchfurther; to other types of highest weight
modules(Section4) and otherquantizationalgebras(from Section5 onward).

4. REPRESENTATIONSWITH DEGENERATE VACUA

Such representations may find applications in connection with broken symmetries,
but other applications can also beenvisaged.The<<vacuum>>of the representationspace

V is the subspace (that is canonically identified with) V0 . There is no reason,a pri-
ori, that this should be one-dimensional. In other words, the representation ir0 of the

subalgebra B need not be one-dimensional. Wedo require that ir0 (a1) and it0(P~)

vanish, but ir0(Q~)may be any hermitian representation. [The Q’s span u(n) inside
osp( 1,2 n) 1. The simplest nontrivial example is to let V0 be defined as the linear span

of basis vectors If) 5 1,2,... , with the action

(4.1) iro(Q~)I1)=6~.Ik)+~-6~I1).

Physically, this means that the <<vacuum>> contains precisely one particle; there is no

state with zero particles. Note that the states If) are not degenerate with respect to the
energy. The true physicalvacuumcontainsthe oneparticlestatewith lowestenergy;it
is nondegenerate so long as ~ is a scalar (spinless) field. Weshall discuss the physical
interpretation below.

Writing e.g., a3 for ir( a1) , we have a vacuum subspace characterized by

a,I1)=0, ~jkl
1)°

Q~l1)= 6~lk)+ ~6~l1).
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The norm is introduced in the customary way, beginning with (51k) = 6 (which
makes it

0 hermitian),and (alf),xlk)) = (flx*xlk). Now

(flaka*hlm) = (fl2Q~Im)= 26~’~÷A7’6~.

This is positiveif A > 2 and indefinite if A = 2 . Let

a
t3 1k) = jfk).

In the interestingcase A = 2 theskewcombination If, k) — 1k,5) haszeronorm so that

thephysicalquotient V/V
9 hasonly symmetrictwo-particlestates.The threeparticle

statesarenot all symmetric, however. It is easyto showthat the choice A = 2 leads

to anhermitianrepresentationon V/V9. The proofis relatedto Green’sansatz.[If we

adoptthepoint of view thatthe a’s arenot observables,then we can restrictourselves

to thesubspacethat consistsof all stateswith an odd numberof particles. Then the

hermiticity conditioncanbe satisfiedwith A = 1 , in whichcasewe fall backon theodd

part of Bose-EinsteinFock space].
Thereis nothinginherentlyunphysicalin theideathatthesmallestnumberof particles

is 1 ratherthanzero. After all, scatteringusually involvesat leasttwo particles. The

last,unremovable,particlemay eitherbeoneof the two particlesthat participatein the

scattering,or it maybe aspectator.It would be interestingto investigatethe difference

(if thereis any) betweenthesetwo cases.

The<<vacuum>>sectormaycontainanynumberof particles.An interestingpossibility

is to associatethevacuumsectorwith the 3°K cosmicbackgroundradiation.This may

bequite naturallyconnectedto the existenceof asingletoncosmicseain ouruniverse.

5. CLIFFORD QUANTIZATION

Since(para-)Bose quantizationamountsto selectinga highestweight representa-

tion of osp(I, oo) it is naturalto askwhetherotherinfinite superalgebrascan be used.

Thepossibilityof usingother(super-)algebrashasbeenpointed out by Palev[14], hut

themost immediategeneralizationsarc osp(N,2n) and osp(N,oo) ,the <<extended

orthosymplectic>>algebras.

A basisfor theodd partof osp(N, oo) is (a~’,a
t3’~), 5 = 1,2 ,...; = I ,... , N

Theevenpartisso(N)~sp(oo),withbasis M~(= _M~a),PJ~,P*)kand Q~.The

(anti-) commutatorsare

= 6~M~÷o&flQ~,

=

=

[M~, a7 = 5~a7—
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and so on.
The most degenerate hermitian representation is the supersingleton, where

a7=~®a,, a*j~=,yu®a*j,

with (‘~y’~) , a = 1,... , N ,the generators of a Clifford algebra

~ = ~ 4M~ =

and = ~- [ a1,ak] . The module is a direct product of a Clifford module and ordinary

Fockspace.The <<vacuum>>is degenerate(an so(N) spinor),but this doesnot repre-
senta realdifficulty. Thequantum fields arejust ~y~( a); a singleconventionalBose-
Einstein field multiplied by N -by- N matrices,whichmakesthisparticularrepresenta-

tion uninteresting. [Analogousextended super singleton representations of osp ( N,4)

appear in supergravity [10]].
However, the field operators are not so simple in other representations of osp( N, oo).

Let us examine the case of a nondegenerate vacuum, characterized by

~ ~kfl\~kfl\a1 ~‘ — “~‘ “ — 2 ~

~ikI
0)”0, M~j0)=0.

Wehave

(0 a7a~a*h1a*m6j0)=

= A{A(6~’~5 —

+
2(~PI 51 —

+ 2~~57}.

If N> 1 , then this is positive definite only if A > 2. The most interesting case is

A = 2 , in which case the subspace with zero norm includes

{a*h1a*m~~+ (‘i,~)— trace}jO)

and

{athla*m
6 — (1,m) — trace}jO)

The traces refer to the index pair ‘y, 5. Thus, in V/k;,

{a*t~axmt — (1,m) — ~51~~(a*~a*mn — (1~m))} 0) = 0

{ a~~ia*mS+ — ~ ~a*~a*ma} 0) = 0.
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NoticethatthissaysnothingifN = I . SincethelowestvalueofA is 2 when N> I

thenewFock spacemay beconsideredasa generalizationof thesimplestform of para-
Bose Fock space.Hermiticity of this representationis provedin the Appendix.

Instead of osp(N,oc) one may consider osp(3, I; oc) , in which so(N) is re-
placedby theLorentz algebra.If parastatisticsis naturalfor confinedquarks,then this

would seemto be an interestingpossibilityfor confinedgluons.

All of this can be repeated for fermions. It may be pointed out that the supermultiplets

of supersymmetrymayalsobe approachedfrom theviewpointof parastatistics,andthat
thevalidity of [b, f]_ = 0 , b = boson, f = fermion , would thenbe abandoned

alongwith Ui, b’]_ = 0 and [f, f’]÷ = 0 . Apparently,nobody hasyetlooked at
para-superstatistics.Finally, stringtheoriesmaybeviewedas anattemptto replace,in

two-dimensionalconformal field theory, osp(1,oo) by aKac-Moody algebra.

6. A REMARK ABOUT GAUGE THEORIES

Sofar, ourdiscussionhasmadealmostno useof thefact thatphysicaltheoriesincor-

porateanotion of space-timesymmetry. [Without space-timesymmetry,therecan be

no sensiblephysicaltheory]. But, in gaugetheories,atleast,thespace-timesymmetries
intrude on theproblemof quantization. Themostdirect way to secthis is to consider

thedefinitionof thenorm.

We haverequiredthatthenormbepositive. But this is not apropertythat is respected

by theinvariantnormusedfor thequantizationof gaugefields. In particular,in thecase

of Bose-Einsteinquantization,thespaceof one-particlestatesis atriplet representation

of thespacetime symmetrygroup(Gupta-Bleulertriplet):

V’ ~ V ~

in which V9 is thespaceof gaugemodes, V/k; is thespaceof physicalstatesand

V’/V is the spaceof <<scalar>>modes(canonicallyconjugateto k;). The only reason

why onecannotfix a <<physical>>subspaceof V is that this is incompatiblewith the

actionon V of thespace-timesymmetrygroup. Therefore,without referenceto this

group onehasno gaugetheories.

Theinvariantmetric of V’ is indefinite, so thenorm givenby

(0la3a’~l0)=

is not invariant. It is thereforeinevitablethat the structureof V’ , with respectto the

actionof the space-timegroup, impinge on thediscussionof quantization. Certainly,

spacetime symmetryis morecentral to a physicaltheorythan osp(I, oo) symmetry.
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7. COMPOSITE BOSE-EINSTEIN FIELDS

Any deviation from the simplestschemeof quantizationleadsto new states,asex-

emplifiedby

[ax), a~kJ_j0).

Theseare introducedin additionto the symmetricstatesthat we continueto identify
and refer to as <<multi-particle states>>. Wewould like to believe,or arrangethe theory

so, that the additional states manifest particle-like properties. [In the case when the axis

create fermions we could speak of <<bosonization>> if the new states obey Bose-Einstein
statistics]. To be precise, let operators blk be defined by

[al,akL = blk, [a*),a*d]_ = _b*)k

Wewantto know whethertheseoperatorscould satisfycommutationrelationsof the
form

ri. J. i_fl [j, i.xtmi_ h~~ijk’LuLmJ— “‘ -
1’jk’” — num~r.

The answer is yes, but not within the context of ordinary parastatistics.
To simplify, let uswrite a_

1 for ax) andlet the indicesrun overthenegativeaswell

as thepositive integersfrom now on. Let w be the sympleticform of Bose-Einstein

quantization:

(7.1) [aJ,ak] = Wik (Bose-Einstein).

As usual, we shall suppose that suppose that is a complex number. A nonlinear

transformation of the field variables would make w dependent on the a’s and all that
could then be said of w is that it is a closed 2 -form. This reminds us of the metric
tensor of special relativity — in terms of general coordinates it is not constant, though
thecurvaturevanishes.Now generalrelativity andgravitonsis theresultof allowing the

metrictensorto developa life of its own.Thenewdegreesappearwhenthemetric field
is nolongerrestrictedby the requirementthat it bereducibleto theMinkowski metricin

some special systems of coordinates. Wesuggest that the sympletic form w may also
be liberated.

Thus we supposethat (7.1) be replaced by (<<deformed>> to)

[aj,akj_ = Wjk+ bjk.

This introduces new states (besides those of ordinary Bose-Einstein Fock space); in

particular, the states

bJkIO), bjkbLmIO), ..



306 M. PLATO, C. FRONSDAL

Wewant these states to obey Bose-Einstein statistics, so we postulate that [15]

[blk, bim]_ = Sikim,

in which r is anumerical 2 -form. Weneedto known [a1, bkl] , andthis cannotvanish
becausethat would violate the Jacobi identity, so we put

[aJ,bkl]_ = ~jk1mZ,

with numericalcoefficients Q and operators z. The Jacobi identity requires that

[a1, zk] ~ 0 ; the simplest possibility is

= ~, [blk,z
t]_ = 0, [z’~,z1]= U.

Nowthe Jacobi identity holds provided only that

~I~jicim =(Jkt)
Em1,kl ~jk1m — (5, m).

Wesee that the commutation relations canbe so chosen as to make the new quanta

behave precisely like conventional Bose-Einstein particles. This quantization scheme is
anessentialpartof our constructionof a completelydynamicaltheory, compositeQED
in De Sitterspace[18], [15]. The constituentsarethe famousDirac singletons,and the

additional, antisymmetric states are just photons.

The original excitations, the a -quanta, are of course unconventional, here as in paras-
tatistics. These quanta have to be <<confined>>; this is the last subject on which we should
like to make some remarks.

8. CONFINEMENT

WhenGreenberg first proposed [16] that quarks may obey parastatistics, he suggested
that these <<particles>> should be discovered in the laboratory. However, subsequent in-
vestigationsshowedthat locality imposessevereselectionrulesthat tend to casta bit of

doubtonthis interpretation.By thetimethatGell-Mannproposed[17] replacingparaby
color(harkingbackto Green’sansatz),it wasno longerexpected that quarks would show
up directly in experiments, and<<confinement>>of quarkssoonbecamea cornerstoneof

stronginteractiontheory. It seemsto us that confinementis a necessarycomplement
to parastatisties.More generally,we would expectthatall unconventionalquantization

schemesrequireconfinementfor thepreservationof micro causality.
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The usual formulation of QCD looks like a conventional quantum field theory; it

is the dynamics that fundamentally alters the structure and is made responsible for the
confinement of quarks andgluons. One is thus denied the hope of getting relevant infor-
mationfromperturbationtheory. Webelievethatit wouldbebettertobuild confinement

into the very fabric of the theory; that is, into the kinematics. In fact, let us look at the
relationship between parastatistics (or color) and confinement in the other direction.

By confinement, of quarks, for example, let us mean the operational fact that they
cannot be isolated experimentally. This says that the quark field, if it is a useful concept
at all, cannot be a local observable. Certain bilinears in the field may be observable;

they will be interpreted in terms of hadrons. This fact, that the quark field is not a local
observable, presents us with an opportunity. Namely, we cannot easily be convinced
that quarks need to be quantizedin the mannerof conventionalfennions. This way
of looking at confinement suggests that we beginby investigating<<particles>>or fields

that are confinedalreadyin thefreeState,beforeany interactionsare contemplated; this
is what we want to call <<kinematic confinement>>. A concrete realization of this idea

is offeredby singleton field theory. Thesefields are confinedfor kinematicalreasons;

the interactionsare severelyrestrictedby gaugeprinciplesarisingout the requirement
of unitarity. In fact, physically interesting interactions canbe introduced only if we are
willing to adopt an unconventionalquantizationscheme.Thetheoryreviewedin Section
7, with the operators a3 creating and destroying singletons, leads to a formulation of
QEDin which photons appear as states consisting of two singletons; while the singletons
themselves remain unobservable [18], [14]. This construction may serve as a paradigm

for the more ambitious hope of achievingsomethingalongsimilar lines for the strong
interactions.

Basically, <<confinement>> of a field amounts to the lack of local observability, which
in turns means that it does not interact locally. Such a field might propagate freely in

some domain, but become observableontheboundary.It wouldbeinterestingto attempt

to understand superconductivity in these terms.
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APPENDIX

Someof the highest weight modules discussed in the text canbeproven unitarizable
by a simple argument that is related to Green’s ansatz. Consider first the direct product
of two ordinary Bose Fock spaces.This is a unitarizable, highest weight module, with
highestweightvector 0) ® 10) . Thisvectorbelongsto thesymmetricpartof thedirect
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product. The antisymmetric part of the direct product is also a unitarizable, highest
weight module, andhere the vacuum sector is spanned by

(A.l) 0) ® 1) — It) ® 0).

The destruction operators of the direct product are a3 ® 1 + I ®a3 a~1) + a~
2~,the

two terms anticommuting with each other; the relation to Green’s ansatz is evident.The

highest weight module generatedfrom thevacuumsector(A. 1) is themoduleconsidered
in Section 4; with A 2 . Being an invariant submodule of a unitarizable module it is
evidently unitarizable. Returning to the symmetric part of the direct productwenote in

the same way that 0) ® 10) is cyclic for a submodulethat is equivalentto the Fock
space of para-Bose statistics with A = 2 ; the latter is thereforeunitarizable.

Exactlythesameargumentis usedto proveunitarizability in thecaseof theClifford

Fock space (with A = 2 ), consideredin Section5.
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