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Abstract. This paper reviews the development of parastatistics and interprets the
para-Fock spaces as highest weight modules of infinite dimensional super Lie alge-
bras. Several generalizations are proposed and the relation to composite models and
confinement is pointed out. A concept of «kinematical confinement» is suggested,
with possible application to the strong interactions.

1. INTRODUCTION

The possibility of «abnormal» quantum statistics was raised long ago and occasion-
ally become a hot subject. The idea of a quantum field theory based on something other
than Bose-Einstein or Fermi-Dirac quantization became especially interesting at the time
when physicists were debating the observability of quarks. Since that time, for what we
think are excellent reasons, the idea of abnormal statistics (later replaced by «color») has
been closely associated with confinement.

The basis of quantum statistics is the theory of canonical commutation relations. (In
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this paper, for reasons of economy, we limit ourselves entirely to generalizations of Bose-
Einstein statistics; a parallel discussion of the Fermi-Dirac case would be repetitive). The
idea of generalizations arises from the observation that the most important observables
(free Hamiltonians, symmetry generators,. ... ) are bilinears in the fields (phase space
variables). Seen in this (group theoretical) setting, it is immediately evident that «paras-
tatistics», as introduced by Green and others, is susceptibile to immediate, natural and
interesting generalizations. Sec especially what can be done with a multi-dimensional
«vacuum» sector, below and in Section 4.

The current interest of the authors in reviewing these ideas stems from their work on
singletons. The kinematics of singleton states, and more especially the structure of sin-
gleton gauge theory, shows that the singleton field is not locally obscrvable, a property
that is very similar to confinement. For singleton field theory to become physically rcle-
vant it is necessary to introduce a non local element into the theory; this can be donc via
the choice of statistics. In fact, non-observability of the basic ficld variables may be scen
as an opportunity for the exploitation of generalized statistics. If micro causality is to be
preserved, then quarks and gluons (dynamically confined) and singletons (kinematically
confined) are the only particles for which non standard quantization rules may bc con-
templated. The quantization scheme that has been suggested for singleton field theory,
to be described only briefly at the end of this review, differs from parastatistics in one im-
portant respect. The kinematical properties of two-singleton states arc those of massless
particles composed of singlctons. The new quantization rules give rise to an enlarged
Fock space (as in the case of parastatistics). The additional states, not the usual symmect-
rical two-singleton states, are identified as massless particles (a photon cannot decay into
two singletons!). Our new quantization scheme (a deformation of Bose-Einstein quan-
tization) insures that these massless particles obey standard statistics, something that is
not guaranteed by parastatistics.

There is an obvious relationship between the fundamental space-time group (Poinca-
ré, De Sitter, . . .) and the algebra of observables of the theory (sp,osp,...) : the former
must act by automorphisms on the latter. Some of the implications of this are taken up
in Section 6. One of the generalizations discussed in this paper deals with an infinitc
dimensional vacuum sector that is a carrier space for a U.LR. of the De Sitter group.
The «charge» that distinguishes between different vacua is in this case the De Sitter
minimal energy E, . Such quantization schemes may be relevant to mass generation of
the Higgs-Kibble type. Non-standard vacua of this kind may also find application to the
cosmic residual background radiation.

As we have said already, abnormal statistics is accompanied by a violation of micro
causality. This can be accepted in a physical theory only on the condition that the as-
sociated paiticles (quarks or singletons) be confined. This amounts to a limitation on
the algebra of truc physical observables, which should contain only micro-causal ficlds.
Only particles connccted to true observables can be directly observed. To emphasize
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this point, recall that the type of abnormal statistics (anticommutativity of different Bose
fields) that is sometimes discussed within the context of Wightman axiomatic field theory
can be removed by a non-local Araki-Klein transformation. Even such a mild deviation
from standard statistics as this has profound consequences for the local (pointlike) be-
haviour of the fields.

Through string theories the concept of highest weight modules of infinite dimensional
(super) Lie algebras has become of interest to physicists. The infinite dimensional or-
thosymplectic algebra osp(1,00) is one of the simplest ones, and it is of direct interest
in ordinary field theory. The unitarizable highest weight modules with a nondegener-
ate highest weight space (vacuum) are precisely the Fock spaces of parastatistics, and
thus connected to QCD. The other unitarizable highest weight modules have degenerate
vacua, but for all that they may well have physical applications, perhaps to symmetry
breakdown.

Parastistics is by no means the only altenative to Bose-Einstein or Fermi-Dirac statis-
tics. We review the subject in Sections 2-4 and propose some other possibilities in Sec-
tion 5. Then we turn to a consideration of parastatistics in the framework of gauge theo-
ries. In Sections 7 and 8 we discuss compositeness and confinement, with an application
to composite electrodynamics and a suggestion for the strong interactions.

2. STRUCTURE

One considers a field ¢ on space-time, with a discrete Fourier expansion

@.1) S {#(2)a; + $(z)a"}.

The functions ¢’ are solutions of some wave equation, taking their values in a finite
dimensional vector space. In a quantum field theory a ; and a* are operators acting
in a Hilbert space. It is sometimes said that ¢, and therefore also a; and a*, are not
directly observable. The most important observables, including the Hamiltonian, are
bilinears (currents)

1
(2.2) Q} = 5la;a™],
and perhaps also
2 — 1 *7k 1 x) _xk
(2.3) Pj = 5[aj,ak]+, P = E[G ,a ],

Bose-Einstein quantization is based on the postulate of canonical commutations re-
lations
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[a,,0%]_ = &},

(24) [a/j, ak]_ — [a*jyatk]_ — 0

From this it follows that, for example,

(2.3) [QF,a"]_ = &la™,
(2.6) [Pjy,a™]_ = 8o, + 8ja;,
2.7) [Py, a,)_ = 0.

Now it can be argued that these relations are all that matter and that Egs. (2.4) have
a lower standing.

Eqgs. (2.4) lead to a quantum field theory of particles obeying Bose-Einstein statistics.
It was proposed by Gentile, [1] in 1940, that altemative forms of statistics, intermediate
between Fermi-Dirac and Bose-Einstein, could be envisaged. He showed that a gas
obeying intermediary statistics would show a characteristic thermodynamic behavior.
This proposal was strongly criticized by Sommerfeld {2] and others [3] who argued that
it was inconsistent with the basic structure of quantum mechanics. This is less surprising
than the fact that the quantum mechanics of para-bosons remains poorly understood to
this day.

In 1950, Wigner remarked [4] that, in the case of a system of one degree of free-
dom, specifically the harmonic oscillator, only Eq. (2.5) is needed to derive the correct
equations of motion, and (2.4) can in fact bec modified in an essential way. The structure
investigated by Wigner is defined by

[Q,e]l_=—a, [Q,a"]_=0o", [a,0"],=2Q.

The super Lie algebra generated by a,e*,Q and a?,a*?, with commutation re-
lations for the last two dictated by the Jacobi identity, is osp(1,2) , and Wigner was
perhaps the first to study its representations.

These ideas — Gentile’s statistics and Wigner’s quantization postulate — came together
for the first time in 1953, in the work of H.S. Green [5]. He took Eq. (2.5) as the basic
postulate — necessary to derive the equations of motion- but added Eqgs. (2.6) and (2.7)
as well, perhaps because the operators P, would seem to be qualified observables.
Anyway, the structure (2.5)-(2.7) has become the definition of parabose quantization.

It should be stressed that Egs. (2.2) and (2.3) are interpreted as definitions of the
P's and Q's. 1t then follows from Egs. (2.5)-(2.7) that the commutator algebra of
these operators has the Lie algebra structure of the infinite sympletic Lie algebra denoted
sp(oo) . This was first pointed out by Kamefuchi and Takahashi [6].



PARASTATISTICS, HIGHEST WEIGHT osp(N,00) MODULES,... 297

When this Lie algebra is extended by inclusion of the operators a;, a* , with commu-
tation relations (2.5)-(2.7) and the anti-commutation relations (2.2) and (2.3), then one
recognizes the structure of the infinite orthosymplectic super Lie algebra osp(1,c0) .
This was first pointed out by Omote et al. [7] in 1976. It should be noted that neither of
these structures, sp(oo) or osp(1,00) , includes the canonical commutation relations
4.

The structure of parabose statistics is thus the Lie superalgebra osp(1, co) . The spe-
cial relations (2.4) are outside the structure and are defined in the enveloping algebra;
they characterize a very special class of representations of osp(1,00) and this class
includes the usual Fock space construction of Bose-Einstein field theory. Among the
other hermitian representations of osp(1,00) the simplest ones are intimately related
to parabose statistics, as will be seen next in Section 3. The remaining hermitian repre-
sentations are constructed on degenerate vacua, in Section 4. After that we shall consider
interesting altematives to osp( 1, co) , for this algebra is not the only one on which one
can base field quantization.

3. REPRESENTATIONS

A complete accounting of the linear representations of osp(1,00) is both difficult
and unnecessary. Physics is often said to be interested exclusively in hermitian represen-
tations, but this is not true unless one would exclude gauge theories (including strings)
from physics. What is true is that hermitian representations appear as subquotients of
the representations that are realized on the field modes. The latter can sometimes be
constructed from the former, but additional input is required, usually locality.

Fortunately, there is another important physical requirement that holds even in gauge
theories. The energy should be positive or, more precisely, bounded below. Thus, we
make the

POSITIVE ENERGY HYPOTHESIS. The spectrum of the energy operator H is bounded
below.

If the spectrum of H is discrete, then there will be a subspace of Hilbert space on
which H takes its lowest value; this subspace is usually taken to be one-dimensional,
in which case one is led to the:

STRONG VACUUM HYPOTHESIS. Therc is a unique, one-dimensional subspace (with
basis |0) ) on which the energy operator H reaches its lowest bound.

In the case of a relativistic field theory in Minkowski space the spectrum of H is
never discrete. In this respect the situation is much more favorable in De Sitter space,
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where the energy spectrum of positive energy representations is always discrete. In
Minkowski field theories without massless particles the lower bound of the spectrum
is isolated. But if massless particles are present, as it is in all gauge theories, then the
lower bound is at the end of a continuum (the soft photon spectrum), and in this casc
it is not at all obvious that the vacuum sector exists at all. For this reason we prefer to
continue the discussion in the context of field theory on De Sitter space. It should be
noted that most of the cited papers deal with a discrete basis in the space of one particle
states, something that is more than a little akward fo justify in a Minkowski space ficld
theory.

A standard procedurc allows us to construct all the irreducible representations of
osp(1,n) with positive energy; this includes all the hermitian representations [8]. The
method is well known as holomorphic induction and relies on the identification of a solv-
able subalgebra of osp(1,n) . Inthe case of osp(1,c0) the same construction can be
carried out, but exhaustivity is not assured.

We suppose that there is an action of the space-time group so(3,2) on the lincar
space spanncd by (o), j = 1,2,..., and that this action is a positive encrgy rcp-
resentation. This justifics our referring to the a*s as positive energy opcrators. The
P's( P*s) are negative (positive) energy operators, while the @Q's are of both kinds.
The inducing subalgebra is

k
(3.1 B= span(a,j,ij,Q}-).
We choose an irreducible representation m; of B, onaspace Vj , such that
ﬂo(aj) =0, WO(PJ-k) =0.

The restriction of 7, to the subalgebra spanned by the Qf is irreducible but other-
wise arbitrary for the moment.
Let w be the representation of osp(1,00) that is induced from the representation
o of B s
osp( co)

n=IND 1 .
B

It is given by the natural action of osp(1, 0co) on the space
3.2) V=U®YV,
B

where U is the universal enveloping algebra of osp(1,00) .

The space V, is the «vacuum» sector. At first we limit oursclves to the case when
V, is one-dimensional (case of nondegenerate vacuum) and choosc a basis 10} for V,,
the vacuum state. Writing e.g., a; for m(a;) , we then have
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a;[0) =0, Pyl0)=0,

p

(3.3) Qﬂo) = 56;|0>’ A real.

The last equation (with ) integer) is the basic assumption, along with Green’s com-
mutation relations, for parabose statistics. This was first made explicit by McCarthy [9].
The vectors

0), 70}, a¥a*|0),

span V . We next introduce, in standard fashion, an invariant norm on V . Ignoring
zero norm states we shall then recover ordinary Fock space when A = 1 and para-Fock
space when A =2 3 ....

Let z be ahomogeneous polynomial inthe @*'s ; then one easily shows (since |0) is
a highest weight vector) that z*z]0) isareal multiple N(z) of |0} . This gives anorm
N(z) = ||z||* on V, and an inner product with respect to which the restriction of 7 to
the real subsuperalgebra is hermitian. But this norm is not positive in general. We recall
the analogus construction for osp(1,2n) [10]. For A > n— 1 the representation 7
is irreducible, and the restrictionto osp(1,2n, R) is unitarizable. For A < n—1 the
representation is irreducible and not unitarizable, except for the values A = 0,1,...,n—
1 . Thus, for infinite n only the non-negative, integral values of A are of interest.

When X\ belongs to this exceptional set, A = 0,1,...,n—1 for osp(1,2n) and
X =0,1,2,... for osp(l,o00), then the invariant norm is degenerate; V contains
an invariant subspace V, , the radical of the inner product. An irreducible, hermitian
representation of the real subalgebra is induced on the quotient V/ V, . We shall demon-
strate this for the lowest values of )\ . The fact that parabose statistics requires A to be
a positive integer was postulated but not proved already by Green [5]. Greenberg and
Messiah [11] seem to have been the first to connect integrality of X to positivity of the
norm.

Setting the norm (0[0) to 1 we have

G.4) (0la;a™*|0) = (012Q5|0) = A6},
(0laja,0™a™™(0) = M{(2 — N 8467 + AST6L),
which shows that:

a) When A = 0,a*/|0) and all other basis vectors except |0) have zero norm. The
quotient V/V, is one-dimensional and carries the trivial representation.
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b) When X = 1, the antisymmetric states (a*a*™ — a*™a*))|0) have zero norm.
Less obvious at first sight is the fact that

(3.5) [a®,0*™]_=0

on V/ V, ; this is proved by induction. If
YIjy, i) = a”i ... a*|0)

is equal Mod V, to its symmetric part (which, as we have just seen, is true for p = 2 ),
then

a’jq} [.7‘17"' )jp+]]

isequal Mod V, to

prl
E&;"‘P[jl,...,jk,...,jwl],
k=1

which shows that ¥ [,,...,,,] isequal Mod V, to its symmetric part.

Itis now easy to see that the first of Eqs. (2.4) alsoholdsin V/V,,when X = 1. The
space is thus ordinary Bose-Einstein Fock space. This representation of osp(1,2n) ,
with n finite or not, is called the oscillator representation; it is the most degenerate
representation and, for finite =, the only one in which (2.4) holds.

For A = 2, the vectors (3.4) have positive norm. On the other hand

a]_axka:la*ml()) — (6]1;axla*m + é}na*latkﬂo >

is the symmetric in k,m , from which it may casily bc deduced that the vectors
[a**a*a™™ — (k,m)]|0)

have zero norm. Further calculations show that the quotient V/V, is in this casc the
Fock space of the simplest form of para-Bose statistics. The following facts summarize,
in the present idiom, the result of many people; the most complete statements arc to be
found in the book of Ohnuki and Kamefuchi, Ref. 11.

1) For any positive integer m , the action of the symmetric group S(m) on the
space V,, spanned by

a* .. a‘fm]())
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reduces to a direct sum of irreducible representations, identified with their Young ta-
bleaux. All tableaux with m boxes appear each one with multiplicity 1 [12].

2) When ) is a positive integer, then V/ V, coincides with the Fock space of para-
Bose quantization of order X [11].

3) When ) is apositive integer, then the intersection of V,, with the subspace V of
zero norm contains precisely those Young tableaux that have more than A rows. That
is, the quotient V,_/(V,. N V,) of physical states contains every Young tableau with
m boxes and no more than X\ rows precisely once. See Ohnuki and Kamefuchi, [11]
Bracken and Green [13].

The representations of the real subalgebra of osp(1,00) induced on V/V, , in all
cases with a nondegenerate vacuum and X integer, arc hermitian. A simple proof related
to Green's ansatz is given in the Appendix.

The generalization of Bose-Einstein quantization proposed by Green [5] and subse-
quently known as parastatistics, is timid. The present view of it, in terms of highest
weight osp(1,00) modules, carries us much further; to other types of highest weight
modules (Section 4) and other quantization algebras (from Section 5 onward).

4. REPRESENTATIONS WITH DEGENERATE VACUA

Such representations may find applications in connection with broken symmetries,
but other applications can also be envisaged. The «vacuum» of the representation space
V is the subspace (that is canonically identified with) V, . There is no reason, a pri-
ori, that this should be one-dimensional. In other words, the representation 7, of the
subalgebra B need not be one-dimensional. We do require that my(a;) and mo(P;y)
vanish, but ﬂO(Qf) may be any hermitian representation. [The Q's span u(n) inside
osp(1,2n) ]. The simplest nontrivial example is to let V,, be defined as the linear span
of basis vectors |7}, 7 =1,2,..., with the action

@.1) m QD] = 8|k) + §6§Il>-

Physically, this means that the «vacuum» contains precisely one particle; there is no
state with zero particles. Note that the states |7} are not degenerate with respect to the
encrgy. The true physical vacuum contains the one particle state with lowest energy; it
is nondegenerate so long as ¢ is a scalar (spinless) field. We shall discuss the physical
interpretation below.

Writing e.g., a; for w(a;) , we have a vacuum subspace characterized by

o;[l) =0, Pyull)=0,

A
QU = 8k + 8.
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The norm is introduced in the customary way, beginning with (f|k) = 8]’.‘ (which
makes m, hermitian), and (zlj), z|k)) = (j|z*z|k) . Now

(jlaga™|m) = (7]2QLIm) = 2616¢ + AT6L.
This is positive if X > 2 and indefinite if X = 2 . Let
a* k) = |7, k).

In the interesting case X = 2 the skew combination {7, k} — |k, 7} has zero norm so that
the physical quotient V/ V, has only symmetric two-particle states. The three particle
states are not all symmetric, however. It is easy to show that the choice A = 2 leads
to an hermitian representation on V/ V, . The proof is related to Green’s ansatz. {If we
adopt the point of view that the a’s are not observables, then we can restrict ourselves
to the subspace that consists of all states with an odd number of particles. Then the
hermiticity condition can be satisfied with A = 1, in which case we fall back on the odd
part of Bose-Einstein Fock space].

There is nothing inherently unphysical in the idea that the smallest number of particles
is 1 rather than zero. After all, scattering usually involves at least two particles. The
last, unremovable, particle may either be onc of the two particles that participate in the
scattering, or it may be a spectator. It would be interesting 1o investigate the differcnce
(if there is any) between these two cases.

The «vacuum» sector may contain any number of particles. An interesting possibility
is to associate the vacuum sector with the 3°K cosmic background radiation. This may
be quite naturally connected to the existence of a singleton cosmic sea in our universe.

5. CLIFFORD QUANTIZATION

Since (para-) Bose quantization amounts to selecting a highest weight representa-
tion of osp(1,o00) itis natural to ask whether other infinite supcralgebras can be used.
The possibility of using other (super-) algebras has been pointed out by Palev [14], but
the most immediate gencralizations arc osp(N,2n) and osp(N,00) , the «cxtended
orthosymplectic» algcbras.

A basis for the odd part of osp( N, c0) is (a;-’,a*f“) ,J=12,..5a=1,...,N.
The even part is so( N) @sp(oo) , with basis M (= —MP*) P, P*7% and Q. The
(antt-) commutators are

1
slaf,a™], = 6 M + 67°Q,
1

_[0’7’ af]+ = 6aﬂij’

2

k  »la _ ol xka
[ ]‘;a ]* - 8]0‘ )
{

af 11 ~ g8, ay, B
M ,a}-]A—S aj—é aj,
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and so on.
The most degenerate hermitian representation is the supersingleton, where

o} =1"®q; o’ =1"®a7,
with (4*), a=1,..., N, the generators of a Clifford algebra

[7*,7P], = 26%, 4M*F =[5

and ij = -;—[ a;,a ] - The module is a direct product of a Clifford module and ordinary
Fock space. The «vacuum» is degenerate (an so( N) spinor), but this does not repre-
sent a real difficulty. The quantum fields are just ¥v*¢(z) ; a single conventional Bose-
Einstein field multiplied by N -by- N matrices, which makes this particular representa-
tion uninteresting. [Analogous extended super singleton representations of osp(N,4)
appear in supergravity [10]].

However, the field operators are not so simple in other representations of osp( N, o).
Let us examine the case of a nondegenerate vacuum, characterized by

a30)=0, QHo) = 38}j0),
Pyl0)y=0, M*%0)=0.

We have
(0]a%aja*"a"™|0) =
= \(\(8P5* 5,87 — 6706°767 60y +
+ 2(6P16°0 8 6L — 656°75L6™) +
+ 2657667}

If N > 1, then this is positive definite only if A > 2 . The most interesting case is
A = 2, in which case the subspace with zero norm includes

{a*"a*™ + (4, 6) — trace }|0)
and
{a*"a™™ _ (1, m) — trace }|0)

The traces refer to the index pair «, 6. Thus, in V/ Vo
1
{atha:mé _ (l, m) — J_V_5'15 g( a:«laa:ma _ (l, m))} lo) =0

2
*ly xmb & =la _*ma -
{a Ta +(’7,5)——N5"’ Ea o™ }]0)—0.
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Notice that this says nothingif N = 1. Since the lowestvalueof X is 2 when N > 1,
the new Fock space may be considered as a generalization of the simplest form of para-
Bose Fock space. Hemniticity of this representation is proved in the Appendix.

Instead of osp(N,oo0) one may consider osp(3,1; 00), in which so(N) is re-
placed by the Lorentz algebra. If parastatistics is natural for confined quarks, then this
would seem to be an interesting possibility for confined gluons.

All of this can be repeated for fermions. It may be pointed out that the supermultiplets
of supersymmetry may also be approached from the viewpoint of parastatistics, and that
the validity of [b,f]_ = 0, b = boson, f = fermion, would then be abandoned
along with [b6,6']_ = 0 and [f, f]l, = 0. Apparently, nobody has yet looked at
para-super statistics. Finally, string theories may be viewed as an attempt to replace, in
two-dimensional conformal ficld theory, osp(1,00) by a Kac-Moody algcbra.

6. AREMARK ABOUT GAUGE THEORIES

So far, our discussion has made almost no use of the fact that physical theories incor-
porate a notion of space-time symmetry. [Without space-time symmetry, therc can be
no sensible physical theory]. But, in gauge theories, at least, the space-time symmetries
intrude on the problem of quantization. The most direct way to sce this is to consider
the definition of the nom.

We have required that the norm be positive. But this is not a property that is respected
by the invariant norm used for the quantization of gauge ficlds. In particular, in the casc
of Bose-Einstein quantization, the space of one-particle states is a triplet representation
of the space time symmetry group (Gupta-Bleuler triplet):

V2V,

in which V is the space of gauge modes, V/V, is the space of physical states and
V'/V is the spacc of «scalar» modes (canonically conjugate to V). The only reason
why one cannot fix a «physical» subspace of V is that this is incompatible with the
action on V of the space-time symmetry group. Thercfore, without reference to this
group one has no gauge theorics.

The invariant metric of V' is indefinite, so the norm given by

ko) = sk
(0}a;0™*|0) = &}
is not invariant. It is thercfore incvitable that the structure of V', with respect to the

action of the space-time group, impinge on the discussion of quantization. Centainly,
space time symmetry is more central to a physical theory than osp(1,00) symmetry.
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7. COMPOSITE BOSE-EINSTEIN FIELDS

Any deviation from the simplest scheme of quantization leads to new states, as ex-
emplified by

[a¥,a**]_|0).

These are introduced in addition to the symmetric states that we continue to identify
and refer to as «multi-particle states». We would like to believe, or arrange the theory
so, that the additional states manifest particle-like properties. [In the case when the o*'s
create fermions we could speak of «bosonization» if the new states obey Bose-Einstein
statistics]. To be precise, let operators by, be defined by

la;,a,). = by, [a*,a*]_ = b7k,

We want to know whether these operators could satisfy commutation relations of the
form

(b4 by =0,  [by, "™ = number.

The answer is yes, but not within the context of ordinary parastatistics.

To simplify, let us write a_; for o*’ and let the indices run over the negative as well
as the positive integers from now on. Let w be the sympletic form of Bose-Einstein
quantization:

(7.1) laj,0,]. =wy (Bose-Einstein).

As usual, we shall suppose that suppose that w ;& 1s a complex number. A nonlinear
transformation of the field variables would make w dependent on the a's and all that
could then be said of w is that it is a closed 2 -form. This reminds us of the metric
tensor of special relativity — in terms of general coordinates it is not constant, though
the curvature vanishes. Now general relativity and gravitons is the result of allowing the
metric tensor to develop a life of its own. The new degrees appear when the metric field
is no longer restricted by the requirement that it be reducible to the Minkowski metric in
some special systems of coordinates. We suggest that the sympletic form w may also
be liberated.

Thus we suppose that (7.1) be replaced by («deformed» to)

laj,ap]_ = wjp + by

This introduces new states (besides those of ordinary Bose-Einstein Fock space); in
particular, the states

bjl0), bixbim[0),
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We want these states to obey Bose-Einstein statistics, so we postulate that [15]
[bjk!bhn]— = Eijnn

in which & is anumerical 2 -form. We need to known [a;, by} , and this cannot vanish
because that would violate the Jacobi identity, so we put

[a;, 0] = Qjm2™,

with numerical cocfficients Q and operators z. The Jacobi identity requires that
lay, 2%]1# 0 ; the simplest possibility is

la;,2°]_ = 8F, [by,2'1_=0, [2521=0.

Now the Jacobi identity holds provided only that

E ijlm =0,

(§12)]
Emjkt = Qg — (J,m).

We see that the commutation relations can be so chosen as to make the new quanta
behave precisely like conventional Bose-Einstein particles. This quantization scheme is
an essential part of our construction of a completely dynamical theory, composite QED
in De Sitter space [18], [15]. The constituents are the famous Dirac singletons, and the
additional, antisymmetric states are just photons.

The original excitations, the a -quanta, are of course unconventional, here as in paras-
tatistics. These quanta have to be «confined»; this is the last subject on which we should
like to make some remarks.

8. CONFINEMENT

When Greenberg first proposed [16] that quarks may obey parastatistics, he suggested
that these «particles» should be discovered in the laboratory. However, subsequent in-
vestigations showed that locality imposes severe selcction rules that tend to cast a bit of
doubt on this interpretation. By the time that Gell-Mann proposed [17] replacing para by
color (harking back to Green's ansatz), it was no longer expected that quarks would show
up directly in experiments, and «confinement» of quarks soon became a comerstone of
strong interaction theory. It scems to us that confinement is a necessary complement
to parastatistics. More generally, we would expect that all unconventional quantization
schemes require confinement for the prescrvation of micro causality.
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The usual formulation of QCD looks like a conventional quantum field theory; it
is the dynamics that fundamentally alters the structure and is made responsible for the
confinement of quarks and gluons. One is thus denied the hope of getting relevant infor-
mation from perturbation theory. We believe that it would be better to build confinement
into the very fabric of the theory; that is, into the kinematics. In fact, let us look at the
relationship between parastatistics (or color) and confinement in the other direction.

By confinement, of quarks, for example, let us mean the operational fact that they
cannot be isolated experimentally. This says that the quark field, if it is a useful concept
at all, cannot be a local observable. Certain bilinears in the ficld may be observable;
they will be interpreted in terms of hadrons. This fact, that the quark field is not a local
observable, presents us with an opportunity. Namely, we cannot easily be convinced
that quarks need to be quantized in the manner of conventional fermions. This way
of looking at confinement suggests that we begin by investigating «particles» or fields
that are confined already in the free state, before any interactions are contemplated; this
is what we want to call «kinematic confinement». A concrete realization of this idea
is offered by singleton field theory. These fields are confined for kinematical reasons;
the interactions are severely restricted by gauge principles arising out the requirement
of unitarity. In fact, physically interesting interactions can be introduced only if we are
willing to adopt an unconventional quantization scheme. The theory reviewed in Section
7, with the operators a; creating and destroying singletons, leads to a formulation of
QED in which photons appear as states consisting of two singletons; while the singletons
themselves remain unobservable {18], [14]. This construction may serve as a paradigm
for the more ambitious hope of achieving something along similar lines for the strong
interactions.

Basically, «confinement» of a field amounts to the lack of local observability, which
in tums means that it does not interact locally. Such a field might propagate freely in
some domain, but become observable on the boundary. It would be interesting to attempt
to understand superconductivity in these terms.
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APPENDIX

Some of the highest weight modules discussed in the text can be proven unitarizable
by a simple argument that is related to Green’s ansatz. Consider first the direct product
of two ordinary Bose Fock spaces. This is a unitarizable, highest weight module, with
highest weight vector [0) ® [0) . This vector belongs to the symmetric part of the direct
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product. The antisymmetric part of the direct product is also a unitarizable, highest
weight module, and here the vacuum sector is spanned by

(A1) 0)ell) -1 &|0).

The destruction operators of the direct product are e;®1+1®aq; = aﬁl) + a§~2) , the

two terms anticommuting with each other; the relation to Green’s ansatz is evident. The
highest weight module generated from the vacuum sector (A.1) is the module considered
in Section 4; with A = 2 . Being an invariant submodule of a unitarizable module it is
evidently unitarizable. Retumning to the symmetric part of the direct product we note in
the same way that {0) @ |0) is cyclic for a submodule that is equivalent to the Fock
space of para-Bose statistics with X\ = 2 ; the latter is therefore unitarizable.

Exactly the same argument is used to prove unitarizability in the case of the Clifford
Fock space (with A = 2 ), considered in Section 5.
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